Skip to main content

A practical comparision of multitasking libraries

The following code-base attempts to compare multiple libraries on a simple experiment of Algebraic operations.

The results are in favour of certain libraries because they are more natural in he application of Compute bound tasks, whereas the others are better at I/O bound tasks. Threading in Python is considered broken... I've also refrained from using the MPI library of C.

I've made a driver.py program which create 5 sets of test-cases of increasing size to test the excution times of each version of each program.

The comparison is across different libraries and languages, with the following programs:

C:
  • optimal serial code
  • openMP directive based parallelism
  • pthread library
Python:
  • optimal serial
  • pyMP
  • Python multiprocessing module
Note that the gcc compiler automatically vectorizes the addition of arrays x and y using SIMD compliant hardware and appropriate data-types.

I'll be adding the GPU comparison as soon as I can! Currently I don't have a GPGPU compatible graphics card on my device...


Open source Code:

https://github.com/varun-manjunath/ParallelComputing/tree/master/library_comparison

Comments

Popular posts from this blog

Parallel computing jargon

Parallel is always better than Serial... right? NO Well, in the most general case, parallel computing is better than serial computing in terms of speed and throughput. Sometimes, we have to make other considerations too. As a comparison , consider computer networking where serial transmissions are straight-forward and faster than their parallel SCSI  counterparts! Some processes are inherently not parallelizable, due to presence of data dependency. (Two bank account withdrawals from different locations which may lead to negative account balance if done simultaneously! Anyway, such a pair of withdrawals with critical section management using semaphores/mutexes conceptually and momentarily reduces to serial execution...) On a lighter note, the process of Sneezing and keeping your eyes open is not parallelizable for example! Before jumping into the concepts and principles of parallelizing a given task, let us go through some interesting set of ( controversial ...

Scilab matrix norm optimization

I had used Scilab for learning Digital Image Processing. It is a good open source alternative to Matlab. Although it has a good foundation, it was very clear that it was improvement was still possible. In a recent image processing workshop, I learnt that the Scilab community had open sourced the source code on GitHub. Keeping in mind that the software is continually evolving, I knew I could put my optimization skills to good use. So, I dug into the code-base and found a few optimizable programs. So, I decided to inculcate parallelism into matrix norm calculation program, which is quite simple yet used by many other subprograms and external function calls. https://github.com/opencollab/scilab/blob/master/scilab/modules/linear_algebra/src/c/norm.c There were many potential areas for optimization: Elimination of redundant comparisons Use else if construct to remove redundant checks Remove floating point equality comparison! Embarrassingly parallel/perfect ly parallel for l...

A simple python program using multiprocessing... or is it?

I would like to show you a very simple, yet subtle example on how programs can seem to produce unreasonable outputs. Recently, I was glancing through certain programs in Python, searching for places to optimize code and induce parallelism. I started thinking of threads immediately, and how independent contexts of computation can speed up code. Although I program frequently with Python, I hadn't been using any kind of explicit parallelism in my code. So, using my C knowledge, I went towards the Threading library of Python. Long story short, that was a mistake! Turns out that the Python implementation which is distributed by default (CPython) and Pypy, both have a process-wide mutex called the Global Interpreter Lock. This lock is necessary mainly because CPython's memory management is not thread-safe. The GIL locks up any kind of concurrent access to any objects in the Python run-time to prevent any race conditions or corruption of states. This is effectively a synchroniz...